Fonctions, itérations, bijections

Composition

Exercice 1 On considère $f: x \mapsto \frac{1}{1-x}$. On pose $f_1 = f$ et pour tout $x \in \mathbb{R}$ et $n \ge 2$, $f_n(x) = f(f_{n-1}(x))$. Déterminer $f_{2024}(2024)$.

Exercice 2 Que dire d'une fonction f vérifiant

1.
$$\forall x \in \mathbb{R}, f(x+2) = x^2 + x + 1$$
?

2.
$$\forall x \in \mathbb{R}_+, f\left(\frac{x}{x+1}\right) = x$$
?

Exercice 3 Rappeler la définition d'une fonction décroissante. Montrer que si $f \colon \mathbb{R} \to \mathbb{R}$ est une fonction décroissante, la composée $f \circ f$ définie par $(f \circ f)(x) = f(f(x))$ est croissante.

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction strictment croissante et involutive, c'est-à-dire vérifiant $\forall x \in \mathbb{R}, f(f(x)) = x$.

- 1. Montrer que $\forall x \in \mathbb{R}, f(x) = x$.
- 2. En est-il de même si f est décroissante?

Exercice 5 \bigstar Combien existe-t-il de fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tout réel x, on ait $f(x^3 + x) \le x \le (f(x))^3 + f(x)$.

Équations fonctionnelles

Manipulations élémentaires

Exercice 6 Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant $\forall x, y \in \mathbb{R}$, f(x+y) = f(x) - f(y)

Exercice 7 Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant

1.
$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + y$$
.

2.
$$\forall x, y \in \mathbb{R}, f(x - f(y)) = 1 - x - y.$$

Exercice 8 Montrer que si $f: \mathbb{R} \to \mathbb{R}$ vérifie $\forall x \in \mathbb{R}, f(f(x)) = x + 2$, alors $\forall x \in \mathbb{R}, f(x + 2) = f(x) + 2$.

Exercice 9 \bigstar Déterminer les fonctions $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ vérifiant, pour tout $x \neq 1, 2f(x) - f\left(\frac{x}{x-1}\right) = x$. Ind: $\frac{\frac{x}{x-1}}{\frac{x}{x-1}} = \dots$

Équation fonctionnelle de Cauchy

Exercice 10 Déterminer les fonctions $f: \mathbb{Z} \to \mathbb{Z}$ vérifiant $\forall n, m \in \mathbb{Z}, f(n+m) = f(n) + f(m)$.

Exercice 11 Déterminer les fonctions $f: \mathbb{Q} \to \mathbb{Q}$ vérifiant $\forall r, s \in \mathbb{Q}, f(r+s) = f(r) + f(s)$.

Exercice 12 Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues vérifiant $\forall x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y). On admettra que tout nombre réel est la limite d'une suite de rationnels.

Exercice 13 Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues vérifiant $\forall x, y > 0, f(x+y) = f(x)f(y)$

Exercice 14 Déterminer les fonctions $f: \mathbb{Q} \to \mathbb{Q}$ vérifiant $\forall x, y \in \mathbb{Q}, \quad f(x) + f(y) = 2f\left(\frac{x+y}{2}\right)$.

★ Inégalités fonctionnelles

Exercice 15 Déterminer les $f: \mathbb{Z} \to \mathbb{Z}$ bornées vérifiant $\forall n \in \mathbb{Z}, f(n+1) + f(n-1) \geq 2f(n)$.

Exercice 16 Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant $\forall x, y \in \mathbb{R}, |f(x) - f(y)| \le (x - y)^2$. Montrer que f est constante.

III) **Itérations**

Exercice 17 On définit une suite de fonctions polynomiales en posant $P_1(x) = x^2 - 1$ et pour tout $n \in \mathbb{N}^*$, $P_{n+1}(x) = P_1(P_n(x))$.

1. Déterminer les solutions des équations

a)
$$P_1(x) = 0$$
 et $P_1(x) = 1$

b)
$$P_2(x) = 0$$
 et $P_2(x) = 1$

c)
$$P_3(x) = 0$$
 et $P_3(x) = 1$.

2. Déterminer une solution de l'équation $P_{2025}(x) = 0$, et le nombre de solutions de cette équation.

1. Déterminer les fonctions $f \colon \mathbb{N} \to \mathbb{N}$ telles que $\forall x \in \mathbb{N}, f(f(x)) = x + 1$.

2. Pour $k \in \mathbb{N}$ pair, déterminer le nombre de fonctions $\mathbb{N} \to \mathbb{N}$ telles que $\forall n \in \mathbb{N}, f(f(n)) = n + k$.

IV) Injectivité/bijectivité

Définition On dit qu'une fonction $f: X \to Y$ est

- injective si tout élément de Y a au plus un antécédent par f.
- surjective si tout élément de Y a au moins un antécédent par f.
- **bijective** si tout élément de Y a exactement un antécédent par f.

Exercice 19 Que dire de l'injectivité/surjectivité des applications $\mathbb{R} \to \mathbb{R}$ suivantes

1.
$$x \mapsto x^2$$

3.
$$x \mapsto x^3 + x$$

Que dire de l'injectivité/surjectivité des applications $\mathbb{R}^2 \to \mathbb{R}^2$ suivantes

1.
$$(x,y) \mapsto (x+y,x)$$

$$2. (x,y) \mapsto (x+y,xy)$$

Exercice 20 Que dire d'une fonction $f: \mathbb{R} \to \mathbb{R}$ continue et injective? (On ne demande pas de justifier)

Exercice 21 Soient $f, g: \mathbb{R} \to \mathbb{R}$ deux fonctions.

- 1. Si la fonction $x \mapsto g(f(x))$ est injective, f, g sont-elles nécessairement injectives?
- 2. Si la fonction $x \mapsto g(f(x))$ est surjective, f, g sont-elles nécessairement surjectives?

Involutions

Exercice 22 Soit X un ensemble, et $f: X \to X$ vérifiant $\forall x \in X$, f(f(x)) = x. Montrer que f est une bijection.

Exercice 23 Soit p=4k+1 un nombre premier congru à 1 modulo 4, et $S=\{(x,y,z)\in\mathbb{N}^3\mid x^2+4yz=p\}$. On considère les applications $S\to S$ définies par

$$f_1: (x, y, z) \mapsto (x, z, y)$$
 et $f_2: (x, y, z) \mapsto \begin{cases} (x + 2z, z, y - x - z) & \text{si } x < y - z \\ (2y - x, y, x - y + z) & \text{si } y - z < x < 2y \\ (x - 2y, x - y + z, y) & \text{si } x > 2y \end{cases}$

- 1. Vérifier que ces expressions définissent bien des applications $f_i \colon S \to S$ et qu'elles sont involutives, c'est-à-dire que $\forall (x,y,z) \in S, f_i(f_i(x,y,z)) = (x,y,z)$.
- 2. \bigstar En considérant les points fixes de f_2 puis ceux de f_1 , montrer que p peut s'écrire comme une somme de deux carrés. Les points fixes de f_i sont les triplets $(a,b,c) \in S$ tels que $f_i(a,b,c) = (a,b,c)$.

★ et équations fonctionnelles

Exercice 24 Soit $f : \mathbb{N} \to \mathbb{N}$ telle que $\forall n \in \mathbb{N}$, f(f(f(n))) + f(f(n)) + f(n) = 3n.

1. Montrer que f est injective.

2. Montrer que $\forall n \in \mathbb{N}, f(n) = n$.

Exercice 25 Déterminer les fonctions surjectives $f : \mathbb{N} \to \mathbb{N}$ telles que $m \mid n \Leftrightarrow f(m) \mid f(n)$.

Exercice 26 Trouver toutes les fonctions $f : \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x, y \in \mathbb{R}, \quad f(f(x)^2 + f(y)) = xf(x) + y$$

V) Bijections

Exercice 27 1. Existe-t-il une bijection $\mathbb{N} \to \mathbb{Z}$?

2. Existe-t-il une bijection $\mathbb{N} \to \mathbb{N}^2$?

Exercice 28 En considérant la droite issue du point (-1,0) et de pente $r \in \mathbb{Q}$, montrer que l'application $r \mapsto \left(\frac{r^2-1}{r^2+1}, \frac{2r}{r^2+1}\right)$ est une bijection de \mathbb{Q} sur l'ensemble des points du cercle unité à coordonnées rationnelles, sauf l'un de ces points.

Exercice 29

- 1. Montrer que le produit de deux bijections $\mathbb{Z} \to \mathbb{Z}$ ne peut pas être bijectif.
- 2. ★ Un tel produit peut-il être injectif?

Permutations

Définition Une permutation d'un ensemble X est une bijection $f: X \to X$.

Exercice 30

- 1. Soient a, b deux entiers de même parité. Montrer que 4 divise $a^2 b^2$.
- 2. Soient n un entier impair et σ une bijection de [1, n] sur [1, n]. Montrer que 4 divise le produit

$$\prod_{i=1}^{n} \left(\sigma(i)^{2} - i^{2} \right) = \left(\sigma(1)^{2} - 1^{2} \right) \left(\sigma(2)^{2} - 2^{2} \right) \dots \left(\sigma(n)^{2} - n^{2} \right).$$

Exercice 31 Soit n > 1. On écrit les éléments de [1, n], dans l'ordre croissant puis dans un ordre quelconque. On obtient ainsi deux listes, $L_1 = \{1, 2, \ldots, n\}$ et $L_2 = \{x_1, x_2, \ldots, x_n\}$. On calcule ensuite les distances entre 1 et x_1 , 2 et x_2 , ... et n et x_n . Cf l'exemple ci-contre.

Liste L_1	1	2	3	4	5
Liste L_2	4	2	1	5	3
Distances	3	0	2	1	2

- 1. Pour n = 4, puis pour n = 5, donner un exemple de liste L_2 pour laquelle les distances obtenues sont deux à deux distinctes.
- 2. On suppose que n=6. Montrer que, quelle que soit la liste L_2 , deux des distances obtenues, au moins, sont identiques.
- 3. Plus généralement, montrer que s'il existe une liste L_2 telle que toutes les distances obtenues soient deux à deux distinctes, alors n est un multiple de 4 ou (n-1) est un multiple de 4 .

Système complet de résidus modulo p

Exercice 32 Soit p un nombre premier et $a \in [1, p-1]$.

- 1. Montrer que les restes modulo p des entiers $a, 2a, \ldots, (p-1)a$ couvrent tous les restes non nuls possibles modulo p.
- 2. En déduire que tout entier $N \geq ap$ peut s'écrire comme combinaison linéaire N = au + pv, avec $u, v \in \mathbb{N}$.

Exercice 33 En considérant le produit $P = \prod_{k=1}^{p-1} k$ modulo p, utiliser l'exercice précédent pour montrer que $a^{p-1} \equiv 1[p]$.

Une énumération des rationnels

Exercice 34 On définit une suite $(u_n)_{n\geq 1}$ en posant $u_1=1$, et, pour tout $n\geq 1$, $u_{2n}=u_n+1$ et $u_{2n+1}=\frac{u_n}{u_n+1}$.

- 1. Calculer les 8 premiers termes de la suite (u_n) .
- 2. Démontrer que tout nombre rationnel strictement positif est égal à un terme u_n .
- 3. Démontrer que tout nombre rationnel strictement positif est égal à un unique terme u_n .